On discrete and continuous nonlinear Fourier transforms
نویسندگان
چکیده
منابع مشابه
Discrete–time Fourier Series and Fourier Transforms
We now start considering discrete–time signals. A discrete–time signal is a function (real or complex valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets, as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is the notation used in EECE 359 and EECE 369. Discrete–time signals arise in t...
متن کاملDiscrete–time Fourier Series and Fourier Transforms
We now start considering discrete–time signals. A discrete–time signal is a function (real or complex valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets, as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is the notation used in EECE 359 and EECE 369. Discrete–time signals arise in t...
متن کاملContinuous and Discrete Wavelet Transforms
Rob A. Zuidwijk CWI E-mail: [email protected] Url: http://www.cwi.nl/cwi/projects/wavelets.html November 6, 1997 Abstract In this lecture, the continuous wavelet transform will be discussed and some attention will be given to the discrete wavelet transform. Finally, wavelet transforms on multidimensional data will be considered. The set-up of the lecture is as follows: 1. The continuous wavelet t...
متن کاملContinuous and Discrete Wavelet Transforms
This paper is an expository survey of results on integral representations and discrete sum expansions of functions in L(R) in terms of coherent states. Two types of coherent states are considered: Weyl–Heisenberg coherent states, which arise from translations and modulations of a single function, and affine coherent states, called “wavelets,” which arise as translations and dilations of a singl...
متن کاملComputation of Convolutions and Discrete Fourier Transforms by Polynomial Transforms
Discrete transforms are introduced and are defined in a ring of polynomials. These polynomial transforms are shown to have the convolution property and can be computed in ordinary arithmetic, without multiplications. Polynomial transforms are particularly well suited for computing discrete two-dimensional convolutions with a minimum number of operations. Efficient algorithms for computing one-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2014
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/563/1/012025